
Cocoa Programming Guidelines

Wojciech Nagrodzki
November 28, 2014

Special thanks to: Krzysztof Profic, Bartłomiej Hyży, Grzegorz Wikiera,
Piotr Węgrzynek and Daniel Garbień

Contents

Code Appearance 3
Class names are not prefixed usually 3
Protocol names indicates behaviour 3
Header files follow a structure 3
Implementation files are divided by pragma marks 5
Property attributes are kept in an order 5
Protocols and constants are prefixed with a class name 6
IBOutlets are declared privately 6
Classes may have additional header file for subclasses 6
Methods return early and often 7
Methods are not bisected with conditionals 8
Methods can be prefixed with get 8

General rules 9
Header files are imported only if necessary 9
Delegate methods always pass the sender 9
Propertyʼs default values are documented conditionally 9
Init methods take only mandatory parameters 10
Accessors are not used in init and dealloc 10
Abstract classes can be faked with assertion 10
Abstract methods raise exceptions 11
The highest level of abstraction is used by default 11
Exceptions are not used to control flow 11
Lazy loading reduces memory footprint 12
No object register other objects as observers 12
Methods do not return NSError object 12
Custom errors belong to error domains 13
Properties can be added to existing classes 13

Concurrency 15
Prefer dispatch queues to locks for mutual exclusion 15
Multiple readers one writer 16
NSOperation can be cancelled before it begins execution 16

UIView 17
View is usually initialised in two ways 17
The interface of generic view 18
The interface of specific view 18

UIViewController 19
Properties affecting user interface 19
View controller containment 19

1

Container specific items are provided by a property 19
Container is accessible from contained view controllers 20

The deallocation problem 20

Core Data 21
Category provides helper methods to managed object 21
Custom objects are stored as transformable attributes 21
Objective-C types are stored through NSValue 22

2

Code Appearance

Hardly any software is maintained by its original author for its whole life. Writing code in an unified
way helps engineers to understand it more quickly.

Class names are not prefixed usually
Prefixes are used only for classes which are to be shared between applications.

Protocol names indicates behaviour
Most protocols group related methods that arenʼt associated with any class in particular. This type of
protocol should be named so that the protocol wonʼt be confused with a class. A common convention
is to use a gerund (“...ing”) form:

• NSLocking Good

• NSLock Poor (seems like a name for a class)

Some protocols group a number of unrelated methods (rather than create several separate small
protocols). These protocols tend to be associated with a class that is the principal expression of
the protocol. In these cases, the convention is to give the protocol the same name as the class. An
example of this sort of protocol is the NSObject protocol.

Header files follow a structure
Each header file should be succinct, and comply with the following declarationʼs order:

1. Imports

2. Forward class declarations

3. Enumeration types

4. Constants

5. Notification names and its user info dictionary keys

6. Delegate protocol

7. Data source protocol

8. Class interface

3

A class interface has a fixed structure as well:

1. Properties

2. Data source property

3. Delegate property

4. Class methods

5. Instance methods

Please pay attention to the linespacing, it is also a rule.

#import <Foundation/Foundation.h>

@class ExampleClass;

typedef NS_ENUM(NSInteger, Enumeration) {
EnumerationA,
EnumerationB

};

extern CGFloat const ExampleClassDefaultHeight;

extern NSString * const ExampleClassWillPerformActionNotification;
extern NSString * const ExampleClassDidPerformActionNotification;
extern NSString * const ExampleClassActionNameKey;

@protocol ExampleClassDelegate <NSObject>

- (void)exampleClass:(ExampleClass *)exampleClass didPerformAction:(Action *)action;

@optional

- (void)exampleClass:(ExampleClass *)exampleClass willPerformAction:(Action *)action;

@end

@protocol ExampleClassDataSource <NSObject>

- (NSInteger)exampleClassNumberOfActions:(ExampleClass *)exampleClass;

@end

@interface ExampleClass : NSObject

@property (strong, nonatomic) NSURL * initialProperty;
@property (weak, nonatomic) id<ExampleClassDataSource> dataSource;
@property (weak, nonatomic) id<ExampleClassDelegate> delegate;

+ (id)exampleClassWithInitialProperty:(NSURL *)initialProperty;
- (id)initWithInitialProperty:(NSURL *)initialProperty;
- (void)performAction;

@end

4

Implementation files are divided by pragma marks
Methods in an implementation file appear in the same order as they are declared in the header. They
are also grouped by pragma marks similar to the following:

#pragma mark - Public Properties
#pragma mark - Public Class Methods
#pragma mark - Public Instance Methods
#pragma mark - IBActions
#pragma mark - Overridden
#pragma mark - Private Properties
#pragma mark - Private Class Methods
#pragma mark - Private Instance Methods
#pragma mark - Protocols
#pragma mark - Notifications

In need of greater granularity:

#pragma mark - Overridden (UIView)
#pragma mark - Overridden (UIContainerViewControllerCallbacks)
#pragma mark - Overridden (UIViewControllerRotation)

Property attributes are kept in an order
The attributes are kept in the same order through all property declarations.

[assign | weak | strong | copy] + [nonatomic | atomic] + [readonly | readwrite] + [getter =]

None of the attributes can be omitted with the exception of readwrite.

@property (assign, nonatomic) CGFloat height;
@property (strong, nonatomic) UIColor * color;
@property (copy, nonatomic) NSString * name;
@property (weak, nonatomic) id <UITableViewDelegate> delegate;

Getters for boolean properties, if they are adjectives, are renamed in the following manner:

@property (assign, nonatomic, getter = isVisible) BOOL visible;
@property (assign, nonatomic, getter = isEnabled) BOOL enabled;
@property (assign, nonatomic, getter = isTracking) BOOL tracking

Important: The copy attribute is often used with NSString, NSArray or NSDictionary to preserve
encapsulation, since the value passed into the setter might be an instance of mutable subclass.

5

Protocols and constants are prefixed with a class name
Protocols, notification names, enumeration types and other constants that refer to a particular class
are prefixed with the name of that class.

typedef NS_ENUM(NSInteger, UITableViewStyle) {
UITableViewStylePlain,
UITableViewStyleGrouped

};

UIKIT_EXTERN NSString *const UITableViewIndexSearch;

UIKIT_EXTERN const CGFloat UITableViewAutomaticDimension;

UIKIT_EXTERN NSString *const UITableViewSelectionDidChangeNotification;

@protocol UITableViewDelegate<NSObject, UIScrollViewDelegate>
...

IBOutlets are declared privately
Outlets are defined as weak properties at the top of a class extension, and divided by one line from
the other properties.

@interface PanelViewController ()

@property (weak, nonatomic) IBOutlet UIButton * infoButton;
@property (weak, nonatomic) IBOutlet UIButton * closeButton;
@property (weak, nonatomic) IBOutlet UILabel * descriptionLabel;

@property (weak, nonatomic) UIView * overlayView;

@end

Classes may have additional header file for subclasses
Private methods and properties are never exposed. To provide a subclass access to them, they have
to be declared in a category entitled ForSubclassEyesOnly. It should be placed in a separate header
file, named in the following manner: [Class Name] + Subclass.h.

Tip: UIGestureRecognizerSubclass.h is a good example of that approach.

6

Methods return early and often
A nesting usually makes code harder to read.

- (BOOL)loginUser:(NSString *)user withPassword:(NSString *)password
{

if (user.length >= 6) {
if ((password.length >= 8) {

// the actual logging code
}

}
return NO;

}

Getting invalid cases out of the way first will keep the working code with one level of indentation,
and ensure that all parameters are valid. This paradigm is called The Golden Path.

- (BOOL)loginUser:(NSString *)user withPassword:(NSString *)password
{

if (user.length < 6) return NO;
if (password.length < 8) return NO;

// actual logging code
}

This approach has one more advantage, it is easier to add an error handling later on.

- (BOOL)loginUser:(NSString *)user withPassword:(NSString *)password error:(NSError **)error
{

if (user.length < 6) {
if (error != NULL)

*error = [NSError errorWithDomain:ExampleDomain
code:1001

userInfo:@{NSLocalizedDescriptionKey: @”User has to...”}];
return NO;

}

if (password.length < 8) {
if (error != NULL)

*error = [NSError errorWithDomain:ExampleDomain
code:1002

userInfo:@{NSLocalizedDescriptionKey: @”Password has to...”}];
return NO;

}

// actual logging code
}

7

Methods are not bisected with conditionals
The following method structure is not acceptable.

- (void)method
{

if (self.valueX == 10) {
// perform some actions

}
else {

// perform some other actions
}

}

Bisection can be removed by returning within an if statement.

- (void)method
{

if (self.valueX == 10) {
// perform some actions
return;

}

// perform some other actions
}

In one case bisection is allowed.

- (void)method
{

if (self.valueX == 10) {
// perform some actions

}
else {

// perform some other actions
}

// perform some actions no matter what
}

Methods can be prefixed with get
Get prefix is used only in situations when a value is returned indirectly via a memory address.

@interface NSValue : NSObject <NSCopying, NSSecureCoding>

- (void)getValue:(void *)value;

@end

8

General rules

Header files are imported only if necessary
Importing a header file is allowed:

• if class needs to conform to a protocol (header with protocol declaration)

• if class is inheriting from another class (header with superclass declaration)

• if class uses enums in its interface (header with enums declarations)

In any other case a forward declaration should be applied.

Delegate methods always pass the sender
A delegation method passes the sender as the first parameter. It is a good practice to use will/did
paradigm.

- (NSInteger)exampleClassNumberOfActions:(ExampleClass *)exampleClass
- (void)exampleClass:(ExampleClass *)exampleClass willPerformAction:(Action *)action;
- (void)exampleClass:(ExampleClass *)exampleClass didPerformAction:(Action *)action;

Propertyʼs default values are documented conditionally
The alloc method clears out the memory allocated for an objectʼs properties, by setting it to zero.
If a property value is not altered during the initialisation, a note about its default value may be
omitted.

/*
* A Boolean value that determines whether the view is hidden.
*/

@property(nonatomic, getter=isHidden) BOOL hidden // represented by zeroed memory

On the contrary, if the default value is changed, a mention about it is included.

/*
* Defines the anchor point of the layer’s bounds rectangle.
* The default value of this property is (0.5, 0.5).
*/

@property (nonatomic) CGPoint anchorPoint // not represented by zeroed memory

9

Init methods take only mandatory parameters
All settings required to a proper initialisation are passed as initialiserʼs parameters. They are later
accessible through readonly properties.

@property (strong, nonatomic, readonly) DownloaderMode downloaderMode;

- (id)initWithDownloaderMode:(DownloaderMode)downloaderMode;

Tip: If you need a convenience method to create instances, consider creating factory methods.

Accessors are not used in init and dealloc
Instance subclasses may be in an inconsistent state during init and dealloc method execution,
hence code in those methods must avoid invoking accessors.

- (id)init
{

self = [super init];
if (self) {

_foo = [NSMutableSet set];
}
return self;

}

- (void)dealloc
{

[_titleLabel removeObserver:self forKeyPath:@”text”];
}

Abstract classes can be faked with assertion
Creating instances of an abstract class is foiled by the following assertion.

- (id)init
{

self = [super init];
if (self) {

NSAssert1([self isMemberOfClass:[MyAbstractClass class]] == NO,
@”%@ is an abstract class. Please do not create instances of it.”, [self class]);

}
return self;

}

10

Abstract methods raise exceptions
Forcing a subclass to provide an implementation of a method is accomplished by raising an exception
in superclass method.

- (void)abstractMethod
{

[NSException raise:NSInternalInconsistencyException
format:@”It’s template method. Implementation must be provided in subclass.”];

}

The highest level of abstraction is used by default
Lower levels are used only when more control is required. For example, instead using GCD:

dispatch_sync(dispatch_get_main_queue(), ^{
// code

}

Use an operation queue.

[[NSOperationQueue mainQueue] addOperationWithBlock:^{
// code

}];

Exceptions are not used to control flow
The general pattern is that exceptions are reserved for programming or unexpected runtime errors,
such as out-of-bounds collection access, attempts to mutate immutable objects, sending an invalid
message, or losing the connection to the window server. A program catching such exception should
quit soon afterwards. Exceptions must not be used to control flow in favor of NSError objects.
When developing a class or a framework exceptions are thrown to indicate that class or framework
are being misused:

- (void)abstractMethod
{

[NSException raise:NSInternalInconsistencyException
format:@”It’s template method, you need to implement it in your subclass”];

}

11

Lazy loading reduces memory footprint
Creating an object on demand reduces initialisation time of a containing class. The following getter
implementation is not thread safe, as two threads might try to initialise _cacheDictionary at the
same time.

- (NSMutableDictionary *)cacheDictionary
{

if (_cacheDictionary == nil) {
_cacheDictionary = [NSMutableDictionary dictionary];

}
return _cacheDictionary;

}

No object register other objects as observers
Object registers only itself as an observer.

[obj addObserver:self forKeyPath:@”isExecuting” options:NSKeyValueObservingOptionNew context:NULL];

Unregistering follows the same rule.

[obj removeObserver:self forKeyPath:@”isExecuting” context:NULL];

Methods do not return NSError object
A failure is indicated by nil or NO returned by a method. Success similarly by YES or not-nil
pointer.

- (id)initWithContentsOfURL:(NSURL *)aURL;
- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)atomically;

NSError object is used only for providing additional information about a failure.

- (id)initWithContentsOfURL:(NSURL *)aURL options:(NSDataReadingOptions)mask error:(NSError **)errorPtr;
- (BOOL)writeToURL:(NSURL *)aURL options:(NSDataWritingOptions)mask error:(NSError **)errorPtr

Therefore you should always check if the return value is nil or NO before attempting to do any-
thing with an NSError object. Moreover, you ought to check the domain before examining the error
code.

12

Custom errors belong to error domains
A custom error have both the error domain and error code defined.

extern NSString *const MyErrorDomain;

typedef NS_ENUM(NSInteger, MyErrorCode) {
MyErrorCode1,
MyErrorCode2,
MyUnknownErrorCode,

};

Both parameters including localised description are used during an error initialisation.

if (error != NULL) {
if(error_situation_1) {

error* = [NSError errorWithDomain:MyErrorDomain
code:MyErrorCode1

userInfo:@{NSLocalizedDescriptionKey: @”Description of error 1”}];
}
else if (error_situation_2) {

error* = [NSError errorWithDomain:MyErrorDomain
code:MyErrorCode2

userInfo:@{NSLocalizedDescriptionKey: @”Description of error 2”}];
}
else {

error* = [NSError errorWithDomain:MyErrorDomain
code:MyUnknownErrorCode

userInfo:@{NSLocalizedDescriptionKey: @”Unknown error”}];
}

}

Properties can be added to existing classes
A property is added to an existing class by using associated objects. Please pay attention to the way
the key is defined.

static void * const navigationItemKey = (void *)&navigationItemKey;

- (void)setNavigationItem:(UINavigationItem *)navigationItem
{

objc_setAssociatedObject(self,
navigationItemKey,
navigationItem,
OBJC_ASSOCIATION_RETAIN_NONATOMIC);

}

13

- (UINavigationItem *)navigationItem
{

UINavigationItem * navigationItem = objc_getAssociatedObject(self, navigationItemKey);
if (navigationItem == nil) {

navigationItem = [[UINavigationItem alloc] init];
self.navigationItem = navigationItem;

}
return navigationItem;

}

14

Concurrency

Recommended reading Concurrent Programming - objc.io

Important: To avoid priority inversion problems with Grand Central Dispatch use default queue
priority DISPATCH_QUEUE_PRIORITY_DEFAULT in almost all cases.

Prefer dispatch queues to locks for mutual exclusion
Critical sections of the code are isolated by a serial dispatch queue. It allows the calling thread to
continue execution in contrast to NSLock and @synchronized directive.

- (id)init
{

self = [super init];
if (self) {

NSString * label = [NSString stringWithFormat:@”%@.isolationQueue.%p”, [self class], self];
_isolationQueue = dispatch_queue_create([label UTF8String], DISPATCH_QUEUE_SERIAL);

}
return self;

}

The above mentioned queue label helps finding the owning object of the queue while debugging.

- (void)startDownloading
{

dispatch_async(self.isolationQueue, ^{
// critical code section A

}
}

- (void)cancelDownloading
{

dispatch_async(self.isolationQueue, ^{
// critical code section B

}
}

Important: The queue is not created lazily as it would require the getter to be thread safe.

15

http://www.objc.io/issue-2/

Multiple readers one writer
A concurrent dispatch queue is used to synchronise access to a property in an efficient way.

- (id)init
{

self = [super init];
if (self) {

NSString * queueLabel = [NSString stringWithFormat:@”%@.syncQueue.%p”, [self class], self];
_syncQueue = dispatch_queue_create([queueLabel UTF8String], DISPATCH_QUEUE_CONCURRENT);

}
return self;

}

Dispatch barrier async runs the block after all previously scheduled blocks are completed and before
any following blocks are run.

- (void)setObject:(id)anObject forKey:(id <NSCopying>)aKey
{

aKey = [aKey copyWithZone:NULL];
dispatch_barrier_async(self.syncQueue, ^{

[self.mutableDictionary setObject:anObject forKey:aKey];
});

}

- (id)objectForKey:(id)aKey
{

__block id object;
dispatch_sync(self.syncQueue, ^{

object = [self.mutableDictionary objectForKey:aKey];
});
return object;

}

NSOperation can be cancelled before it begins execution
The main method checks if an operation is cancelled at the very beginning, and interrupts execution
if condition is true.

- (void)main
{

if (self.isCancelled) return;

// code
}

16

UIView

View is usually initialised in two ways
Either by calling initWithFrame:, or initWithCoder: method when it is unarchived form a nib file.
Both situations are covered.

@interface ExampleView ()

@property (strong, nonatomic) UITextField * textField;

@end

@implementation ExampleView

- (id)initWithFrame:(CGRect)frame
{

self = [super initWithFrame:frame];
if (self) {

[self initializeExampleView];
}
return self;

}

- (id)initWithCoder:(NSCoder *)aDecoder
{

self = [super initWithCoder:aDecoder];
if (self) {

[self initializeExampleView];
}
return self;

}

- (void)initializeExampleView
{

_textField = [[UITextField alloc] init];
_textField.translatesAutoresizingMaskIntoConstraints = NO;
[self addSubview:_textField];

NSDictionary * views = NSDictionaryOfVariableBindings(_textField);
[self addConstraints:[NSLayoutConstraint constraintsWithVisualFormat:@”H:|-8-[_textField]-8-|”

options:0
metrics:nil

views:views]];
[self addConstraints:[NSLayoutConstraint constraintsWithVisualFormat:@”V:|-8-[_textField]-8-|”

options:0
metrics:nil

views:views]];
}

Note that we do not implement encodeWithCoder: method. UIViews and UIViewControllers does
not follow normal serialisation process, their state is persisted in a model.

17

The interface of generic view
The view exposes a minimal set of properties and methods that are required for its configuration.
If possible, a property is not backed up by an instance variable, but rather by viewʼs or subviewʼs
property.

- (NSString *)name
{

return self.nameLabel.text;
}

- (void)setName:(NSString *)name
{

self.nameLabel.text = name;
}

The view is independent of a model. A mapping between viewʼs and modelʼs properties is kept in a
category on that view. This way a view controller is kept cleaner.

@implementation UITableViewCell (Person)

- (void)configureWithPerson:(Person *)person
{

self.imageView.image = person.photo;
self.textLabel.text = person.name;

}

The interface of specific view
The specific view is tightly coupled with model. It exposes one method that takes a model object
and configures the view.

@interface PersonTableViewCell : UITableViewCell

- (void)configureWithPerson:(Person *)person

@end

18

UIViewController

Properties affecting user interface
It is a common practice to have properties on view controller that influence its view. Putting view
adjusting code in the setter is not enough, as view may be not loaded. After it is loaded, view
controller should adjust it according to the property. In result it is convenient to create a separate
method for adjusting the view as it will be called from the setter and viewDidLoad as well.

- (void)setClient:(Client *)client
{

_client = client;
[self adjustUserInterfaceForClient:client];

}

- (void)viewDidLoad
{

[super viewDidLoad];
[self adjustUserInterfaceForClient:self.client];

}

- (void)adjustUserInterfaceForClient:(Client *)client
{

if (self.isViewLoaded == NO) return;
// code adjusting interface

}

View controller containment
Container specific items are provided by a property
If a container requires its child to have specific properties, it delivers a category on UIViewCon-
troller. The category provides an item which encapsulates all of the needed properties.

- (UINavigationItem *)navigationItem
{

UINavigationItem * navigationItem = objc_getAssociatedObject(self, kNavigationItemKey);
if (navigationItem == nil) {

navigationItem = [[UINavigationItem alloc] init];
self.navigationItem = navigationItem;

}
return navigationItem;

}

Whenever container needs to stay in sync with childʼs properties, it uses Key Value Observing.

19

Container is accessible from contained view controllers
Child view controllers can access the container through a property.

@interface UIViewController (UINavigationControllerItem)

@property(nonatomic,readonly,retain) UINavigationController *navigationController;

@end

The following getter implementation traverses view controller hierarchy, and returns the closest par-
ent view controller of the container class.

- (UINavigationController *)navigationController
{

UIViewController * controller = self.parentViewController;
while (controller != nil && [controller class] != [UINavigationController class]) {

controller = controller.parentViewController;
}
return (UINavigationController *)controller;

}

The deallocation problem
The dealloc method of UIViewController does things that are not safe to do on a secondary thread,
thus it must be deallocated on the main thread.

[anObject asynchronousOperationWithCompletionHandler:^(NSData *result) {
[self processData:result];

}];

The foregoing code would cause a problem if implemented in UIViewController subclass as the
self is retained by the bock. To fix the problem it must be referenced by a weak pointer.

Tip: More about the deallocation problem can be found in Technical Note TN2109

20

https://developer.apple.com/library/ios/technotes/tn2109

Core Data

Important: NSManagedObjectʼs properties must not be prefixed with ”new”. Due to @dynamic
compiler directive, the following compiler error is suppressed: ”propertyʼs synthesised getter
follows Cocoa naming convention for returning ʼownedʼ objects”.

Category provides helper methods to managed object
NSManagedObject subclasses can be generated by Xcode schema editor automatically.

@interface Person : NSManagedObject

@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSString * surname;

@end

Therefore, all helper methods are kept in a category in a separate file, otherwise they would be
overridden by the editor.

@interface Person (Additions)

- (NSString *)fullName;

@end

Custom objects are stored as transformable attributes
A custom object can be stored by Core Data as a transformable attribute, if it conforms to NSCoding
protocol. Xcode schema editor uses id for this attributes, which deprives developer of good type
checking.

@interface Person : NSManagedObject

@property (nonatomic, retain) id eyeColorTransformableType;

@end

To ameliorate the situation, a property with the proper class type is provided by a category.

21

@interface Person (Additions)

@property (strong, nonatomic) UIColor * eyeColor;

@end

Consequently the original property is never used except by the shadowing propertyʼs accessors.

@implementation Person (Additions)

- (void)setEyeColor:(UIColor *)eyeColor
{

self.eyeColorTransformableType = eyeColor;
}

- (UIColor *)eyeColor
{

return self.eyeColorTransformableType;
}

@end

Objective-C types are stored through NSValue
NSValue is a simple container for Objective-C data types. It conforms to NSCoding protocol, thus
can be stored by Core Data as transformable attribute.

@interface Figure : NSManagedObject

@property (nonatomic, retain) id imaginaryPositionTransformableType;^^I // stores NSValue object

@end

A category provides a shadowing property for the convenience.

struct ComplexNumber {
float real;
float imaginary;

};
typedef struct ComplexNumber ComplexNumber;

extern ComplexNumber const ComplexNumberZero;

@interface Figure (Additions)

@property (assign, nonatomic) ComplexNumber imaginaryPosition;

@end

22

The getter initialises the local variable so it does not return uninitialised value, if the shadowed
property is nil.

@implementation Figure (Additions)

- (ComplexNumber)imaginaryPosition
{

ComplexNumber imaginaryPosition = ComplexNumberZero;
[self.imaginaryPositionTransformableType getValue:&imaginaryPosition];
return imaginaryPosition;

}

The setter creates NSValue object with the passed value, and stores it.

- (void)setImaginaryPosition:(ComplexNumber)imaginaryPosition
{

NSValue * value = [NSValue valueWithBytes:&imaginaryPosition objCType:@encode(ComplexNumber)];
self.imaginaryPositionTransformableType = value;

}

@end

23

	Code Appearance
	Class names are not prefixed usually
	Protocol names indicates behaviour
	Header files follow a structure
	Implementation files are divided by pragma marks
	Property attributes are kept in an order
	Protocols and constants are prefixed with a class name
	IBOutlets are declared privately
	Classes may have additional header file for subclasses
	Methods return early and often
	Methods are not bisected with conditionals
	Methods can be prefixed with get

	General rules
	Header files are imported only if necessary
	Delegate methods always pass the sender
	Property's default values are documented conditionally
	Init methods take only mandatory parameters
	Accessors are not used in init and dealloc
	Abstract classes can be faked with assertion
	Abstract methods raise exceptions
	The highest level of abstraction is used by default
	Exceptions are not used to control flow
	Lazy loading reduces memory footprint
	No object register other objects as observers
	Methods do not return NSError object
	Custom errors belong to error domains
	Properties can be added to existing classes

	Concurrency
	Prefer dispatch queues to locks for mutual exclusion
	Multiple readers one writer
	NSOperation can be cancelled before it begins execution

	UIView
	View is usually initialised in two ways
	The interface of generic view
	The interface of specific view

	UIViewController
	Properties affecting user interface
	View controller containment
	Container specific items are provided by a property
	Container is accessible from contained view controllers

	The deallocation problem

	Core Data
	Category provides helper methods to managed object
	Custom objects are stored as transformable attributes
	Objective-C types are stored through NSValue

